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The Influence of X-ray Polarization 
on the Visibility of Pendell6sung Fringes in X-ray Diffraction Topographs 
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H. H. Wills Physics Laboratory, Royal Fort, Bristol, England 

(Received 3 November 1964) 

The visibility of Pendell6sung fringes is found to vary periodically with the fringe order. This variation 
of fringe visibility can be explained by the dynamical theory of X-ray diffraction taking into account 
the unpolarized nature of the incident X-ray beam. It has been experimentally demonstrated that there 
is no modulation in fringe visibility if the incident X-ray beam is approximately plane-polarized. 

Introduction 

The first observations of Pendell6sung fringes in the 
X-ray case were made by Kato & Lang (1959) in the 
diffraction topographs of wedge-shaped regions of 
fairly perfect crystals. They prepared wedge-shaped 
specimens of silicon and quartz and were able to show 
that the spacing of the Pendell6sung fringes was in- 
versely proportional to the structure factor of the Bragg 
reflexion used to obtain the diffraction topograph. 

In a series of experiments during which diffraction 
topographs of silicon and germanium wedge-shaped 
specimens were obtained with silver, molybdenum, or 
copper K0q radiation, we have noticed that the visibility 
of PendeU/Ssung fringes varies periodically with the 
fringe order. We have demonstrated, by two different 
methods, that these variations in fringe visibility occur 
as a result of the superposition of two sets of fringes 
with different spacings. One set of fringes is due to 
X-rays which are plane-polarized with the electric vec- 
tor normal to the plane defined by the incident and 
diffracted X-ray beams, while the other set of fringes 
is due to X-rays which are plane polarized with the 
electric vector lying in that plane. 

Experimental 

Experimental technique 
In most of the experiments, the apparatus was the 

same as that used previously in studies of individual 
dislocations by transmission X-ray diffraction topo- 
graphy (Lang, 1959). The principle of the method is 
shown in Fig. 1. The X-ray beam is collimated by a slit 
system and the crystal C is set to satisfy the Bragg 
condition for a particular characteristic radiation. S 
is a slit in a lead screen through which only the dif- 
fracted beam may pass to reach the recording film F. 
The specimen and film are moved together past the 
incident beam so that we can record on the film a dif- 
fraction topograph from a large area of the crystal. 

* Present address: Engineering Physics and Materials 
Science, Bard Hall, Cornell University, Ithaca, N.Y., U.S.A. 

In this case it is assumed that the incident beam of 
X-rays is unpolarized. 

When copper Kcq radiation was used, the incident 
X-ray beam could be almost plane-polarized with the 
electric vector lying in the plane of the ribbon beam 
by symmetric Bragg reflexion in the third order from 
a {111} face of the perfect germanium crystal (P in 
Fig. 2). The Bragg angle of the 333 reflexion from 
germanium with copper Kal radiation is very close to 
45 ° . 

In both experimental arrangements the divergence 
of the beam incident upon C was sufficient to ensure 
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Fig. 1. Experimental arrangement using unpolarized incident 
beam, explained in text. 
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Fig. 2. Experimental arrangement using a plane polarized 

incident beam, explained in text. 
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that the image recorded was a topographic record of 
the integrated reflexion from the wedge-shaped crys- 
tal C. 

Specimen preparation 
Wedge-shaped germanium and silicon specimens 

were prepared from nominally dislocation-free mater- 
ial. In each case one surface was close to (111) and 
the wedge edge was parallel to the [il0] direction. 
The wedges were approximately 1 cm square, the maxi- 
mum thickness being 0-5 mm. in the case of the ger- 
manium wedge (specimen A) and 4 mm for the silicon 
wedge (specimen B). After careful grinding the crystals 
were chemically polished to remove damaged surface 
layers. Germanium was chemically polished in a mix- 
ture of concentrated nitric and hydrofluoric acids in 
the ratio of 10 to 1 parts respectively by volume, while 
silicon was chemically polished in CP-4 (5 parts nitric 
acid, 3 parts hydrofluoric acid, 3 parts acetic acid and 
0.2 parts bromine). 

Spurious intensity variations on the topographs due 
to non-uniformity of the thickness gradient of the 
wedges were avoided by making a direct check of the 
uniformity of the wedges after chemical polishing had 
been completed. The transmitted intensity of a harm- 
onic-free, crystal-monochromatized X-ray beam was 
measured as a function of distance from the edge of 
the wedge. The X-ray beam was 1 mm by 25 microns 
in cross section, the long dimension being parallel to 
the edge of the wedge. Copper Kcq radiation was used 
for specimen A and molybdenum Ket for specimen B. 
In both cases the rate of increase of wedge thickness 
with distance from the edge of the wedge was found 
to be sufficiently uniform for our purpose. 

Experimental results 
We have recorded many different projection topo- 

graphs of the two crystal wedges, some of which are 
illustrated in Figs. 3-6. The microdensitometer traces, 
obtained from the projection topographs, show directly 
how the integrated reflecting power of a perfect crystal 
varies with crystal thickness. The recording medium 
was Ilford L4 nuclear emulsion and the microdensito- 
meter traces were made with a Joyce, Loebl Mk III 
recording microdensitometer. Preliminary experiments 
showed that with the emulsion processing technique 
we adopted the optical density of the emulsion was 
proportional to the X-ray dose up to an optical density 
of 2.5. 

Fig. 3 is the microdensitometer trace of the diffraction 
topograph of specimen A obtained with the 11 i reflex- 
ion and unpolarized copper Kel radiation. We observe 
that the fifth fringe, which is indicated by an arrow, 
has anomalously low visibility. Fig. 4 shows the 220 
diffraction topograph of specimen A taken with unpol- 
arized copper Kea radiation. In this case, positions of 
minimum fringe visibility occur at intervals of approx- 
imately 2.5 fringes. When the incident radiation is 
plane-polarized with the electric vector normal to the 

plane defined by the incident and diffracted beam 
directions, as in Fig. 5, the modulation of Pendel- 
l~Ssung fringe visibility is absent. The slight increase 
in background density near the ninth fringe is due to 
fluorescence from the polarizing crystal P which passed 
through both lead slits. As a further example, Fig. 6 
shows the microdensitometer trace of the 220 diffraction 
topograph of specimen B taken with unpolarized 
molybdenum Kcq I adiation. In this case we see many 
Pendell6sung fringes because the linear absorption 
coefficient of silicon for molybdenum K~I radiation 
is low; the minima of fringe visibility occur at intervals 
of 14 fringes. 
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Fig. 3. Photometer trace of topograph of germanium wedge, 
11 [ reflexion, Cu K~I radiation. 
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Fig. 4. Photometer trace of topograph of germanium wedge, 
220 reflexion, Cu Kcq radiation. 
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Theory 

The dynamical theory of X-ray diffraction applied to 
the case where the incident beam is unpolarized (see 
e.g. James, 1963), and only one Bragg reflexion is 
excited, shows that the dispersion surface has four 
branches. The four branches form a pair of hyperbolae 
with the same asymptotes but with their diameters in 
the ratio of lcos 201 to 1, where 0 is the Bragg angle. 
When the incident radiation is plane-polarized with 
the electric vector either in or normal to the plane 
defined by the directions of the incident and diffracted 
rays, the dispersion surface consists of only one of 
these hyperbolae. The dispersion hyperbola with the 
larger diameter corresponds to the case when the elec- 
tric vector is normal to the plane containing both the 
incident and diffracted beam directions. 

Kato (1961) has shown that, except for the low order 
fringes, the spacing of Pendell6sung fringes in project- 
ion topographs is inversely proportional to the mini- 
mum diameter of the dispersion surface. Thus, when 
the incident radiation is unpolarized, the projection 
topograph consists of two superimposed sets of fringes 
with different spacings, corresponding to the two prin- 
cipal directions of polarization. 

If we approximate the intensity profiles of both sets 
of Pendell6sung fringes by the same sinusoidal function 
it follows straightforwardly that the projection topo- 
graph should show fringes with a spacing which is 
inversely proportional to the mean diameter of the 
two dispersion surfaces. However, the visibility of the 
fringes should vary periodically with fringe order, being 
small at intervals of ½(2n+ 1)N fringes, where n is a 
positive integer or zero and 
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Fig. 5. Photometer  trace of topograph of germanium wedge, 
220 reflexion, plane-polarized Cu K~I radiation. 
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Fig. 6. Photometer trace of topograph of silicon wedge, 220 
reflexion, Mo K~I radiation. 

N =  ½( 1 + lcos 20])/(1 -[cos 20[). (1) 

The positions of the minima of fringe visibility thus 
depend only on the Bragg angle of the reflexion in- 
volved. A comparison between the observed and cal- 
culated positions of minimum fringe visibility is shown 
in Table 1. 

Let us consider the actual intensity profile of the 
wedge topographs more closely. The early experiments 
of Kato & Lang (1959) showed that the assumption 
that the wave incident upon the crystal was a plane 
wave (which assumption is used in the development 
of dynamical X-ray diffraction theory as given by 
Ewald, yon Laue & Zachariasen) was not adequate to 
explain the Pendell/Ssung fringe patterns in section 
topographs of crystals taken with the usual experimen- 
tal arrangements. Instead of a plane wave, a coherent 
spherical incident wave is required to account for 
such patterns. The spherical-wave theory has been 
developed thoroughly by Kato (1961). In this study 
Kato showed inter alia that for the integrated intensi- 
ties of projection topographs the plane -wave theory and 
the spherical-wave theory make similar predictions. 
Thus we may use the values calculated for the Laue 
(transmission) geometry given by Zachariasen (1945) 
for a non-absorbing specimen, and by Ramachandran 
(1954) and Kato (1955) for an absorbing specimen. 

The diffraction geometry of the gently tapering wed- 
ges with which we are here concerned is sufficiently 
close to that of the parallel-sided plate used in sym- 
metrical transmission to allow us to apply the simple 
expressions derived for the latter case. In so doing we 
will modify slightly the familiar formulae in order to 
display the effect of the state of polarization of the 
incident beam. 

Specimen 

A 
A 
B 

Table 1. Positions of minimum fringe visibility 
Radiation Reflexion N calc N observed 

Copper Kcq 111 8.4 ½N = 4-5 
Copper Kel ~20 2.5 2.5 
Molybdenum Kel 220 14 14 
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Let D denote the minimum diameter of the disper- 
sion surface for waves polarized with the electric vector 
perpendicular to the plane of incidence (a case). Then 
for waves with electric vector parallel to the plane of 
incidence (re case) the minimum diameter of the dis- 
persion surface is CD, where C =  Icos 201. In terms of 
familiar quantities, we have 

D = zr V cos 0 '  

F being the structure amplitude and V the volume of 
the unit ceil. 

For a crystal of thickness t, in the symmetrical Laue 
case, and with negligible absorption, the integrated 
reflexion R from Bragg planes of interplanar spacing d 
is given by 

[ (82rrt D (~ 21ttcD 

The first and second terms in the parenthesis of equa- 
tion (2) represent the contributions of the a and zc 
waves, respectively. The integrals have been graphed 
by Zachariasen (1945) and by von Laue (1960). For 
Pendell6sung fringes of higher order than the first few, 
the asymptotic expressions for the Bessel functions may 
be used. Equation (2) then becomes 

R = ¼z~Dd[l -t- C + (2/reX) ~ sin ( X -  ~z/4) 
+(2C/zcX) ~ sin (CX-zr/4)] (3) 

in which X stands for 2retD. From this equation the 
expression for the periodicity of fringe visibility, 
equation (1), follows directly. We see, moreover, that 
the ratio of the amplitudes of the oscillatory terms is 

C ~. This differs from unity by less than 10~/o for values 
of 20 below 35 °. Thus with the low Bragg angles com- 
monly used in topographs taken with Mo Kc~ or Ag Kc~ 
radiation the Pendell6sung fringes disappear complete- 
ly at the minima of fringe visibility. 

When the product of linear absorption coefficient, 
/z, and crystal thickness, t, is such that lzt > 1 then the 
formulae of Ramachandran (1954) or Kato (1955) 
should be used for the integrated reflexion. In the 
symmetrical Laue case their formulae may be written 

R = ¼toDd exp ( - p t  sec 0) [IoQcX) - 1 + 

Io 0 x  x+ 
In this expression I0 is the modified Bessel function of 
the first kind, and x is the ratio of the imaginary to the 
real part of the centrosymmetric structure amplitude 
(equation 3.179, Zachariasen 1945). The functions I0 
represent the enhanced transmitted diffracted intensity 
that appears in the vicinity of Bragg reflexion, i.e. the 
Borrmann effect. Owing to the presence of these terms 
the relative modulation of the diffracted intensity by 
Pendell~Ssung fringes is less than in the non-absorbing 
case, equation (2). However, it is interesting to note 

that the oscillatory components of R, both for a and 
n waves, have the normal attenuation coefficient, 
exp ( - p t  sec 0). Hence the pattern of superimposed 
Pendell6sung fringes due to the a and n waves is inde- 
pendent of K and differs only from that of the non- 
absorbing crystals by the presence of the normal expo- 
nential attenuation. 

Discussion 

The good agreement between experiment and theory 
demonstrates the validity of the dynamical theory of 
diffraction in highly perfect crystals such as our spe- 
cimens. In addition, the factors discussed above have 
implications in several directions, which we will now 
consider separately. 

Intensity measurements 
The equations show that if the integrated intensity 

of a thin or fairly thin perfect crystal used in transmis- 
sion is to be calculated correctly the contributions of 
the a and n waves must be computed separately and 
then added together. If N =  5, say, errors up to about 
20yo in the integrated intensity could be introduced 
by the simpler calculation procedure of inserting a 
mean polarization factor into a single expression of the 

form loXjo(x)dx. 

The polarization ratio 
Experiments have shown that crystals containing an 

appreciable dislocation density, ranging up to 104 to 
105 lines per cm z, or a high density of precipitates of 
sub-micron size (e.g. nitrogen platelets in diamond) 
can still possess sufficient long-range regularity of 
lattice repeat to show quite good visibility of Pendel- 
16sung fringes, and, when higher Bragg angles are used, 
a periodicity of fringe visibility such as that here report- 
ed. It follows that if a fairly perfect crystal has a plate- 
like habit, or has any appreciable part with roughly 
constant thickness not greater than, say, a few times the 
reciprocal of D (i.e. of order a few extinction distances) 
then the ratio of intensities of n waves and a waves in 
the diffracted beam may depart considerably in either 
sense from Icos 201:1. Now it has been already recog- 
nized (Parthasarathy, Ramachandran & Mallikarju- 
nan, 1963) that in absorbing crystals the polarization 
ratio ~, i.e. the ratio of integrated reflexion of n waves 
to that of a waves, can fall much lower than the mosaic 
crystal limit cos a 0. This is made clear by equation (4) 
above, which shows that for a sufficiently thick crystal 
the term lo(xJO in the a-wave contribution will become 
the dominant one in the whole expression. Thus for 
absorbing crystals in which some or all of the diffracted 
beam is transmitted through the crystal the polariza- 
tion ratio c~ does not offer an unambiguous 'perfection 
index' for the crystal. We see now, moreover, that for 
crystals sufficiently thin to be negligibly absorbing the 
value of ~ is still an ambiguous quantity, as a result 
of the different periodicity of the oscillatory terms in the 
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contributions of a and n waves to the integrated re- 
flection. 

Pendell6sung fringe visibility as a crystal perfection 
index 

We have for some years used the visibility of Pendel- 
liSsung fringes in a very qualitative way as an indicator 
of crystal perfection. This type of observation appears 
capable of development as a quantitative technique. 
In crystals of low dislocation density the modulation 
of the total diffracted intensity by the Pendell/Ssung 
fringe system can be used as a statistical measure of 
the degree of lattice imperfection when the lattice 
imperfections are too small or too numerous to be 
individually resolved on topographs. Lattice imper- 
fections due to variable impurity content, radiation 
damage, or fine-scale precipitation fall in this class. 
When making such measurements it is clearly essential 
to take into account the minima of fringe visibility that 
occur using unpolarized X-rays. Hence either the pro- 
perly computed pattern of superimposed fringes should 
be used as a standard with which to compare the topo- 
graphs, or plane-polarized X-rays be used in an experi- 
mental arrangement such as that shown in Fig. 2. 

The measurement o f  F 
It was shown by Kato & Lang (1959) that the meas- 

urement of Pendell/Ssung fringe spacings was an ac- 
curate method for finding the structure amplitude. 
Their calculated and observed fringe spacings in vari- 
ous reflexions of silicon and quartz generally agreed 
well with each other, except that the observed spacings 
were systematically a few per cent smaller than those 
calculated using the mean polarization factor. In the 
present study it has been found that the apparent mean 
fringe spacing derived from measurements on a train of 
fringes does depend slightly upon where the beginning 
and end of the train are situated with respect to the 
cycle of fringe visivility. Where possible, it is desirable 
to make measurements on a train of fringes with its 
first and last fringe separated by an integral number of 
visibility periods. 

We may mention in passing that the conclusion ar- 
rived at by Kato & Lang that the structure amplitude 
of the quartz minor rhombohedron reflexion was in 
fact 9Yo higher than the value given by Wei (1935) is 
confirmed by a comparison with the more recent work 
of BriU, Hermann & Peters (1942) whose value for 
this structure amplitude is 10% greater than that of Wei. 

The measurement of  x 
Considerable effort has been devoted in recent years 

to the precise measurement of the transmitted diffracted 
intensity of various reflexions, h, from thick specimens 

t r of perfect germanium in order to determine x = Fh/F n, 
l l or the related quantity e=Fh/F o (e.g. Batterman, 1962; 

Okkerse, 1962; Hildebrandt & Wagenfeld, 1963). Our 
experiments suggest that provided due account is taken 
of the superimposition of the separate fringe patterns 
of cr waves and re waves, analysis of the intensity pro- 
files across topographs of wedges of absorbing crystals 
should form a simple and quite accurate method of 
determining tc or e. As already pointed out, the oscil- 
latory components of the integrated reflexion have the 
normal attenuation coefficient. They could thus serve 
as an intensity calibration on the topograph which 
would allow the non-oscillatory terms in equation (4) 
to be derived easily from the photometric trace. This 
technique does not require either a stable X-ray source 
or an electronic X-ray counting system. 
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